Cancer Associated Thrombosis: 150 Years Since Trousseau

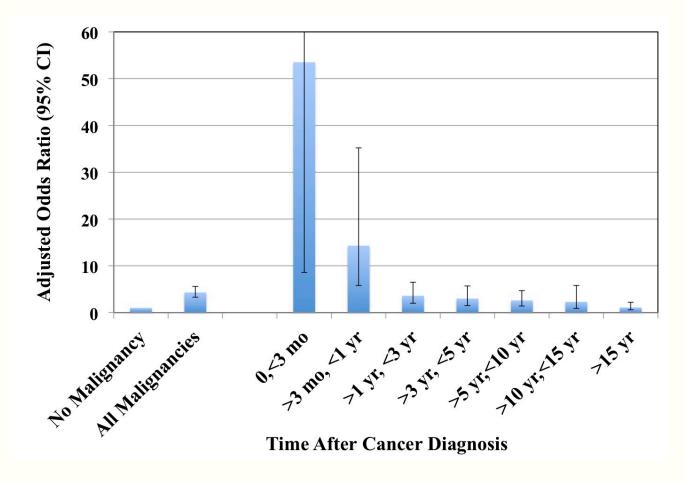
Gerald A Soff MD
Chief, Classical Hematology Service
gas199@miami.edu

Disclosures

- > Research Support (Past 5 years):
 - > Amgen
 - > Janssen Scientific Affairs
 - > Sobi/Dova Pharmaceuticals
 - > Anthos Therapeutics
- > Advisory Boards (Past 5 years)
 - > Janssen Scientific Affairs
 - > Sobi/Dova Pharmaceuticals
 - > Sanofi
 - > Novartis
 - > Agios Pharmaceuticals.

Topics To Cover

- 1. Scope of The Problem: Clinical Relevance Of Thrombosis In Cancer.
- 2. Pathophysiology Of Thrombosis: Virchow's Triad.
- 3. Screening For Occult Malignancy In Patients With VTE
- 4. Management of Thrombosis In Cancer Patients
- 5. Direct Oral Anticoagulants
- 6. Incidental Thrombosis/ Pulmonary Embolism
- 7. Primary Thrombosis Prophylaxis
- 8. Anticoagulation and Brain Cancer
- 9. Management of Anticoagulation in Setting Of Chemotherapy-Induced Thrombocytopenia.



1. Scope of The Problem

- > Venous thromboembolism (VTE), is major source of morbidity and mortality in cancer patients.
- ➤ Incidence rates of cancer-associated thrombosis (CAT) vary with cancer type, stage, treatment, and comorbidities, but it is estimated that approximately 15-20 % of cancer patients will develop a venous thromboembolic episode at some point during the course of their illness.
- > Thrombosis is the second leading cause of death in cancer patients, after cancer itself.
- > Ay C, et al. Thromb Haemost. 2017; 117: 219-30. 10.1160/TH16-08-0615.
- Khorana AA, et al. J Thromb Haemost. 2007; 5: 632-4. 10.1111/j.1538-7836.2007.02374.x.
- Weitz JI, et al. J Thromb Thrombolysis. 2020;50(2):267-77.
- > Deitcher SR. Semin Thromb Hemost. 2003; 29: 247-58. 10.1055/s-2003-40963.
- Prandoni P. Blood. 2005; 106: 4027-33. 10.1182/blood-2005-04-1508.

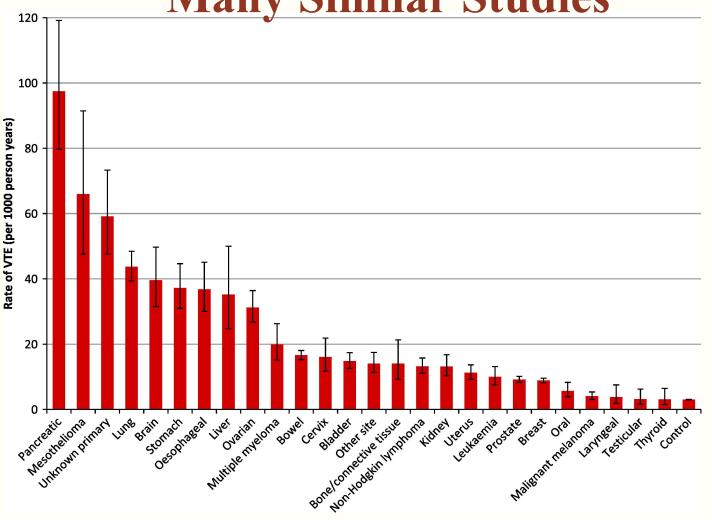
Relationship of Initial Thrombosis With Time From Cancer Diagnosis: Thrombosis in cancer typically presents early in the course of disease.

Redrawn from Blom JW, et al. JAMA 2005;293(6):715-722. **Slide 5 December 14, 2023**

Mortality Rates In Cancer as Function of VTE

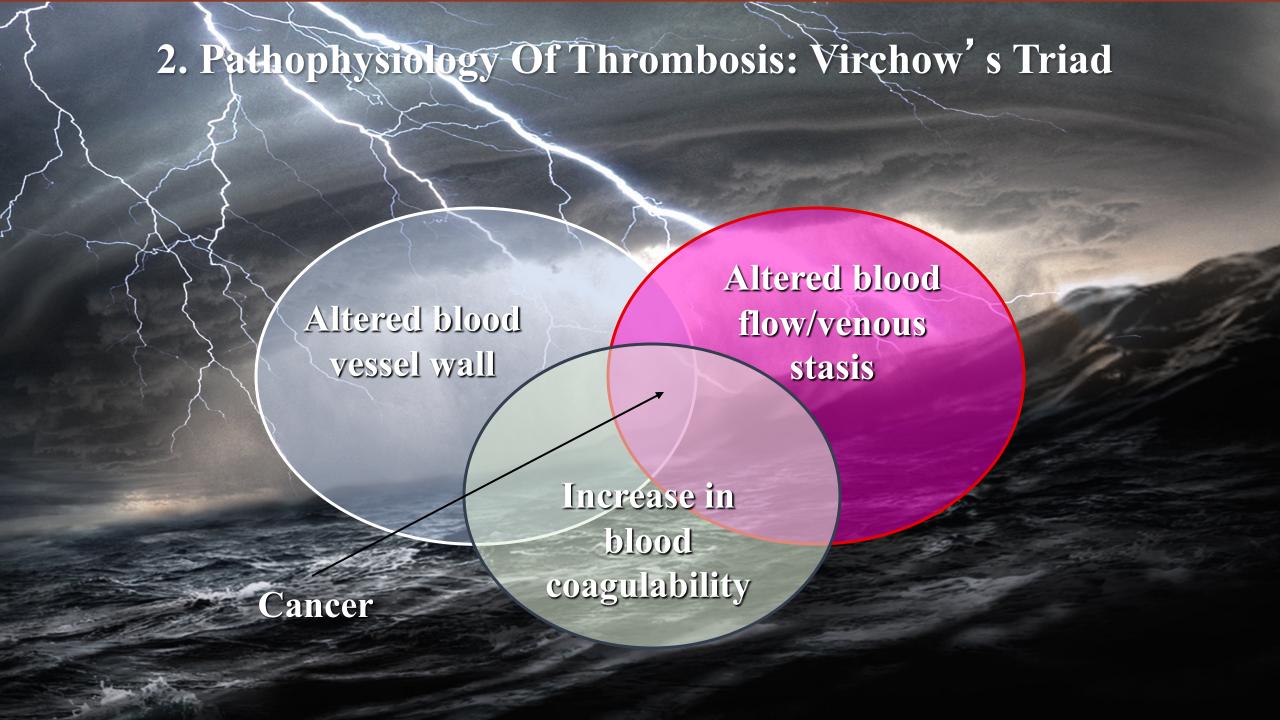
Exposure	HR (95% CI)
None	1.0 (reference)
VTE only	2.6 (2.0-3.3)
Cancer only	7.4 (6.8-8.2)
Cancer-Related VTE	31.2 (24.6-39.6)

- > Patients presenting with a Cancer-Related Venous Thromboembolism have markedly higher risk of mortality than cancer patients in general.
- > However, very few of these patients are dying from the VTE. Most are dying from their underlying cancer.
- > Cancer Associated Thrombosis is a marker of aggressive cancer!
- Age And Gender-Adjusted HR.
- > VTE were at time of presentation.
- > Timp JF et al. Blood 2013;122:1712-1723


Cause of Death Over 12-Months Follow-Up After Venous Thromboembolism

Active Cancer (N=372)	History of Cancer (N=79)
Cancer (83.3)	Cancer (77.5)
VTE (3.2)	VTE (5.6)
Bleed (1.4)	Cardiac (4.2)
Stroke (1.2)	Bleed (2.8)
Cardiac (1.2)	Stroke (0.0)
Other (9.8)	Other (9.9)

- > The Global Anticoagulant Registry in the FIELD (GARFIELD)—VTE (ClinicalTrials.gov: NCT02155491)
- > Prospective, observational study of 10,684 patients with objectively diagnosed VTE from 415 sites in 28 countries.
- > 1075 patients with active cancer, 674 patients with a history of cancer, and 8935 patients without cancer.
- > Weitz et al. Journal of Thrombosis and Thrombolysis (2020) 50:267–277


Rate of Venous Thromboembolism by Cancer Site:

Many Similar Studies

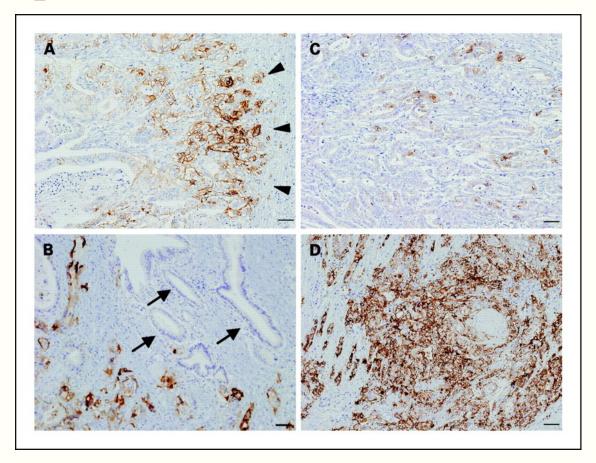
> A.J. Walker et al. / European Journal of Cancer 49 (2013) 1404–1413 Slide 8 December 14, 2023

Coagulation And Vascular Factors Contribute to Cancer Associated Thrombosis

1. <u>Tissue Factor and Other Coagulation Changes:</u>

- > Tumor cells directly produce and release Tissue Factor.
- > Tissue Factor circulates in microparticles and may result in systemic thrombotic risk.
- > Neutrophil Extracellular Traps (NET).

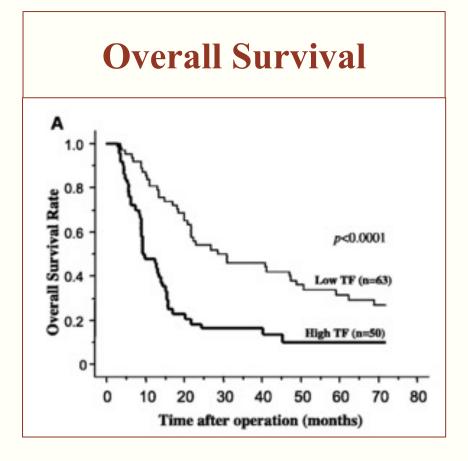
2. Platelets:


- > Elevated platelet count increases thrombosis rates in cancer.
 - > Khorana AA & Connolly GC. JCO. 27:4839-4847, 2009.
- > P-Selectin. Marker of *in vivo* platelet activation.

3. Vascular Abnormalities:

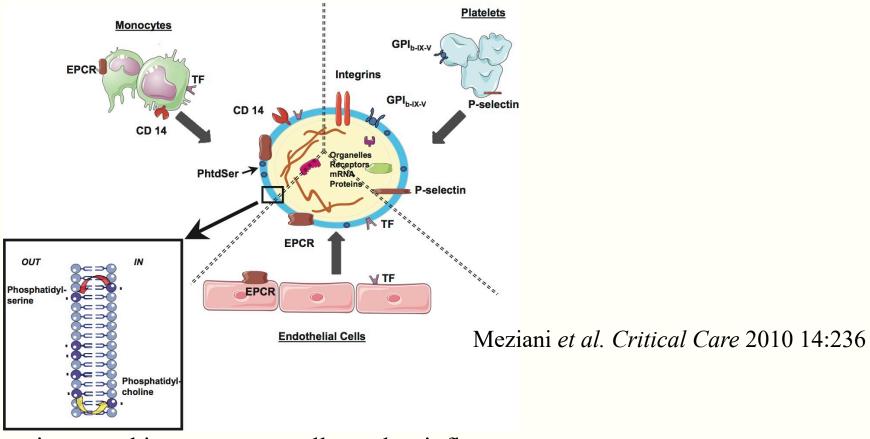
- > Abnormal structure of tumor-associated vessels.
- > Chemotherapy and Antiangiogenic agents target endothelial cells.

TF Expression is Markedly Increased in Pancreatic Cancer, Compared With Normal Pancreatic Epithelium.


> Nitori N. et al. Clin. Canc. Res. 11, 2531-2539, 2005

TF Expression In Pancreatic Cancer and:

Thrombosis Rates

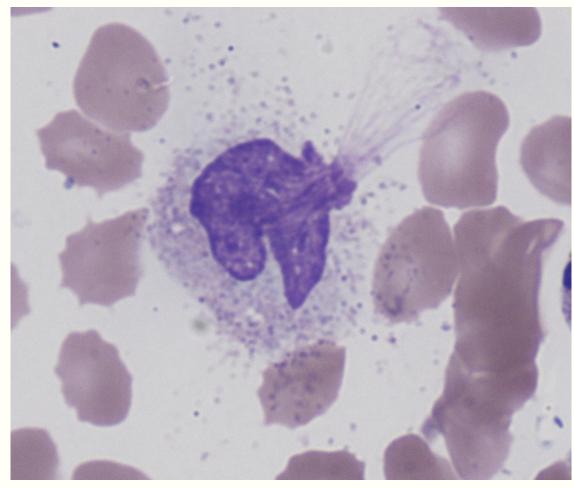
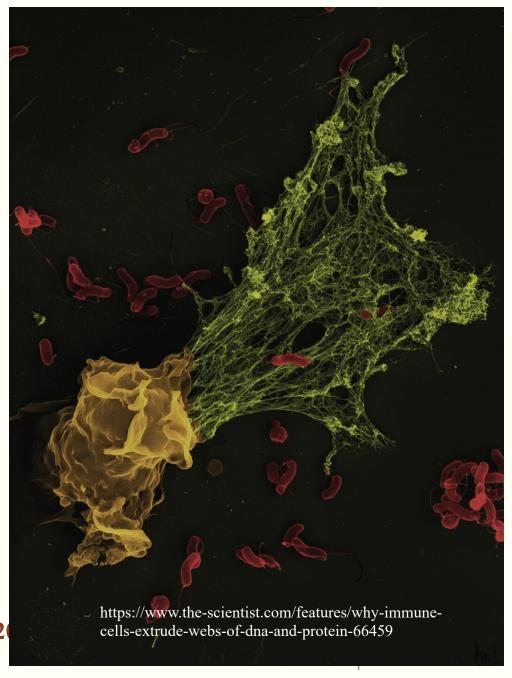

- > High TF, VTE Rate: 26.3%
- > Low TF, VTE Rate: 4.5%
- ~ 6 -fold Risk Ratio, (P = 0.04).
 - Khorana AA. et al, Clin. Canc. Res. 13, 2870-2875, 2007

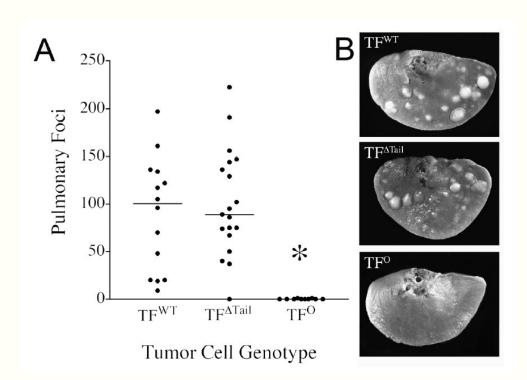
Nitori N. et al. Clin. Canc. Res. 11, 2531-2539, 2005

Tissue Factor Circulates in Cell-Derived Microparticles.

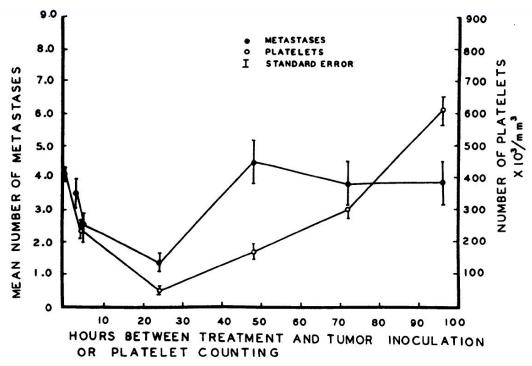
- > TF Microparticle levels are increased in cancer, as well as other inflammatory states.
 - > Sepsis, Sickle Cell Disease, Cancer, others
- > No consensus on methodology for analysis.
- > Has not entered routine research/clinical use.

Neutrophil Extracellular Traps


Image by Soff Slide 14

December 14, 2

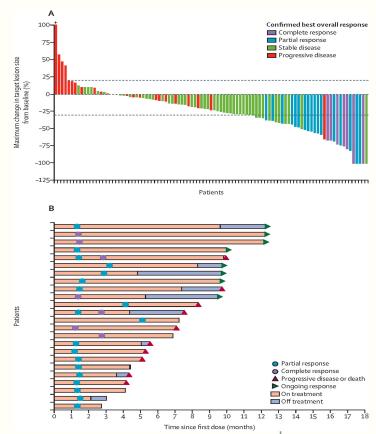


The Coagulation System Plays Key Role in Tumor Growth in Mice, But The Mechanism is Not Known!

- > Tissue Factor Expression in Fibrosarcoma Cells.
- > Palumbo, J et al. Blood 2007

- > Platelets and Metastasis
- Gasic GJ, et al, PNAS, 1968.

Slide 15



Tissue Factor As Target For Anti-Cancer Therapy

> Tisotumab Vedotin

- > "TIVDAK (Tisotumab Vedotin) is a tissue factor-directed antibody and microtubule inhibitor conjugate indicated for the treatment of adult patients with recurrent or metastatic cervical cancer with disease progression on or after chemotherapy."
- The confirmed objective response rate was 24% (95% CI 16–33), with seven (7%) complete responses and 17 (17%) partial responses.
- > 3% Grade 2 and 3% Grade 3 bleeding.
 - > Coleman RL et al. Previously treated recurrent or metastatic cervical cancer: a multicentre, open-label, single-arm, phase 2 study. The Lancet Oncology 2021 22609-619DOI: (10.1016/S1470-2045(21)00056-5)

"Previously treated recurrent or metastatic cervical cancer: a multicentre, open-label, single-arm, phase 2 study."

3. Screening For Occult Malignancy In Patients With VTE

- > Since VTE often is related to an underlying occult malignancy, should one aggressively look for cancer in patients presenting with an unprovoked thrombosis?
- > Will identification of occult cancer impact outcome?
- > Is the occult cancer already metastatic?

https://www.needpix.com/photo/100955/inspector-man-detective-male-person-tracing-the-steps-tracing-steps-searching-for-traces-searching

Screening For Occult Cancer After Unprovoked Venous Thromboembolism

- > Randomized clinical trial to assess the efficacy and safety of adding CT of the abdomen and pelvis to a limited screening strategy for occult cancer.
- > Limited occult-cancer screening:
 - Basic blood testing,
 - > Chest radiography,
 - > Screening for breast, cervical, and prostate cancer.
 - > Carrier M et al. N Engl J Med 2015; 373:697-704

Screening For Occult Malignancy In Patients With VTE

Cohort	New Cancer	Missed Cancers	Mean Time to Cancer Diagnosis	Cancer Mortality
Limited-screening (N=431)	14 (3.2%)	4 (29%)	4.2 months	1.40%
Limited-screening plus-CT (N=423)	19 (4.5%)	5 (26%)	4.0 months	0.90%
	P=0.28	P=1.0	P=0.88	P=0.75

Carrier M et al. N Engl J Med 2015;373:697-704.

4. Management of Thrombosis In Cancer Patients

https://www.clotwise.com/DVTPE/

Slide 20

December 14, 2023

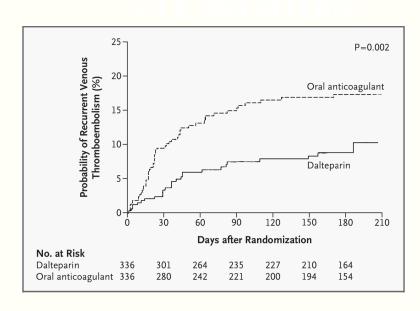
Difficulty Using Warfarin For Anticoagulation in Cancer Patients

- > Unpredictable levels of anticoagulation
 - > Drug interactions
 - > Malnutrition/anorexia
 - > Vomiting
 - > Liver dysfunction.

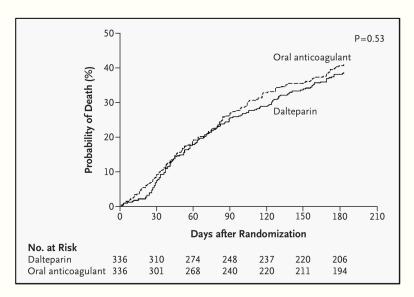
- > Need for interruption of therapy
 - > Invasive procedures
 - > Chemotherapy-induced thrombocytopenia

	Cancer	No Cancer	HR
Recurrent Thrombosis	20.7%	6.8%	3.2
Major Bleeding	12.4%	4.9%	2.2

Prandoni et al *Blood* 100:3484-3488, 2002


The CLOT Study

- > Patients with cancer and DVT &/or PE.
- > All received LMWH (Dalteparin 200 IU/kg, SQ, daily for 5-7 days, then randomized to:
 - > 6 months of Warfarin (INR target 2.5) or
 - > 6 months of Dalteparin:
 - > 200 IU/kg, SQ, daily for 1 month, then 150 IU/kg for 5 months.
 - > Lee et al. NEJM 349:146-53, 2003


Dalteparin Resulted in 50% Reduction in Recurrent Thrombosis

6 Month	VTE Recurrence	Major Bleed	All Bleed
Dalteparin	9%	6%	14%
Warfarin	17%	4%	19%
	HR 0.48, P=0.002	NS	NS

Lee, A. et al. *NEJM* 2003;349:146-153 Slide 23

Death From All Causes

Pooled Analysis of Anticoagulation Trials in Cancer Associated Thrombosis

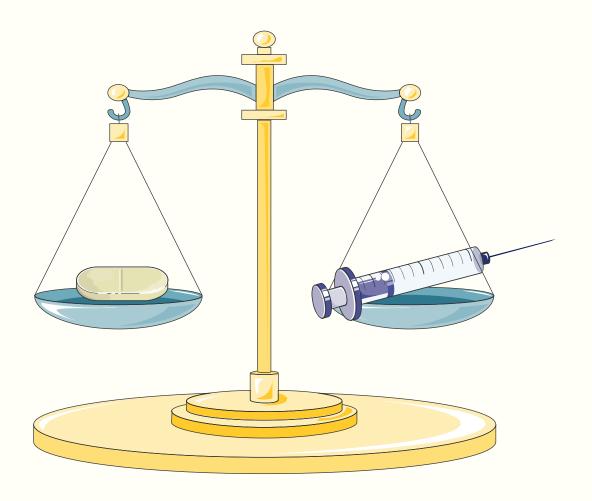
	Recurrent VTE (Events/At Risk)	Major Bleeding (Events/At Risk)
LMWH	7.3% (62/846)	4.5% (42/925)
Warfarin	12.4% (101/817)	4.0% (36/895)

- > LMWH: Dalteparin, Enoxaparin, Tinzaparin.
 - > Lee AY, et al. N Engl J Med 2003; 349(2):146–153
 - > Deitcher SR, et al. Clin Appl Thromb Hemost 2006;12(4):389–396
 - > Lee et al, JAMA. 2015;314(7):677-686.

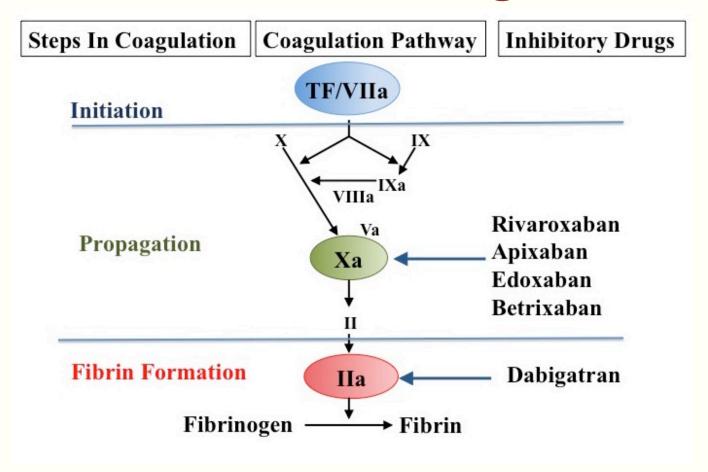
LMWH For Cancer-Associated Thrombosis

- \rightarrow Recurrent VTE: ~7-8%/6 months
- ➤ Major Bleeding: ~4-6%/6 months
- > Expensive
- > Hurts!

https://hairyfarmerfamily.files.word press.com/2011/05/heparin.jpg


https://hannahcrafted.files.wordpress.com/2014/03/img_9252.jpg

http://www.bigtrial.net/2015/04/n arcs-supervisor-never-read-indictment.html



Isn't There a Pill For That?

5. Direct Oral Anticoagulants

Adapted from Soff, Arteriosclerosis, Thrombosis, and Vascular Biology 2012, 32:569-574.

Rivaroxaban for Cancer-Associated Thrombosis: (Quality Assurance Program, 2014-2016)

1. LMWH has been standard of care for Treatment if Cancer-Associated Thrombosis (CAT).

2. EINSTEIN:

- > Rivaroxaban noninferior to warfarin in a general population
- > Einstein-DVT: 6.8% with active cancer (NEJM 2010)
- > Einstein-PE: 4.7% with active cancer (NEJM 2012)

3. Knowledge Gap

- > No studies comparing rivaroxaban with LMWH in CAT.
- > But rivaroxaban was FDA approved for VTE treatment. (2012).

"Rivaroxaban treatment of cancer-associated venous thromboembolism: MSKCC institutional experience"

Soff et al. Research and Progress in Thrombosis & Haemostasis, 2019 Mantha et al, JTT, 2017

> N=1072 Patients with pulmonary embolism or symptomatic DVT. 6 Month Follow-up.

Event	N=1072 Cohort	< 75 yo. (N=890)	$\geq 75 \text{ yo.}$ (N=182)
Recurrent VTE	4.2%	4.1%	4.5%
	(95% CI=2.7%-5.6%)	(2.5%-5.8%)	(0.6%-8.3%)
Major Bleeding	2.2%	2.2%	1.8%
	(95% CI=1.1-3.2%)	(1.0%-3.4%)	(<1-4.2%)
CRNMB	5.5%	5.5%	5.5%
	(95% CI=3.7-7.1%)	(3.6%-7.3%)	(1.1%-9.7%)
All-Cause Mortality	22.2%	21.3%	26.7%
	(95% CI=19.4-24.9%)	(18.3%-24.2%)	(19.2%-33.6%)

DOAC vs. LMWH for the treatment of cancer associated thrombosis. Systematic review and meta-analysis of randomized controlled trials

A. Recurrent venous thromboembolism

	DOAG		LMW	Н		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	34	522	46	524	33.5%	0.74 [0.48, 1.14]	
SELECT-D	8	203	18	203	9.3%	0.44 [0.20, 1.00]	
ADAM-VTE	1	145	9	142	1.4%	0.11 [0.01, 0.85]	
CARAVAGGIO	32	576	46	579	32.0%	0.70 [0.45, 1.08]	
CASTA-DIVA	4	74	6	84	4.1%	0.76 [0.22, 2.58]	
CANVAS	20	330	27	308	19.6%	0.69 [0.40, 1.21]	-
Total (95% CI)		1850		1840	100.0%	0.67 [0.52, 0.85]	◆
Total events	99		152				
Heterogeneity: Tau ² = 0.00; Chi ²	= 4.36, df =	= 5 (P =	= 0.50); I ²	= 0%			0.01 0.1 1 10 100
Test for overall effect: Z = 3.22 (P	= 0.001)						Favours DOAC Favours LMWH

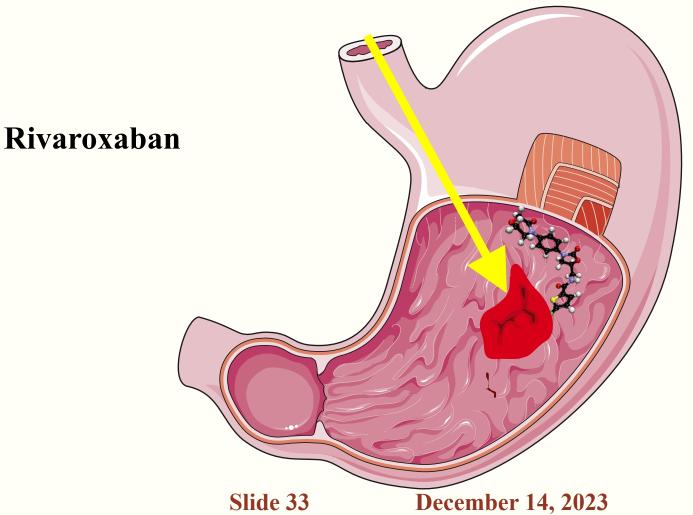
Frere et al. Journal of Hematology & Oncology (2022) 15:69 https://doi.org/10.1186/s13045-022-01289-1

B. Major bleeding							
,	DOA	С	LMW	Ή		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	29	522	17	524	29.2%	1.71 [0.95, 3.08]	-
SELECT-D	11	203	6	203	12.2%	1.83 [0.69, 4.86]	+-
ADAM-VTE	0	145	2	142	1.4%	0.20 [0.01, 4.04]	
CARAVAGGIO	22	576	23	579	30.3%	0.96 [0.54, 1.71]	-
CASTA-DIVA	1	74	3	84	2.5%	0.38 [0.04, 3.56]	
CANVAS	17	330	17	308	24.5%	0.93 [0.49, 1.80]	_
Total (95% CI)		1850		1840	100.0%	1.17 [0.82, 1.67]	*
Total events	80		68				
Heterogeneity: Tau ² = 0.02; Chi ²	= 5.66, df	= 5 (P :	= 0.34); I ²	= 12%	,		0.01 0.1 1 10 100
Test for overall effect: Z = 0.85 (P = 0.39)						0.01 0.1 1 10 100 Favours DOAC Favours LMWH

C. Clinically relevant non major bleeding

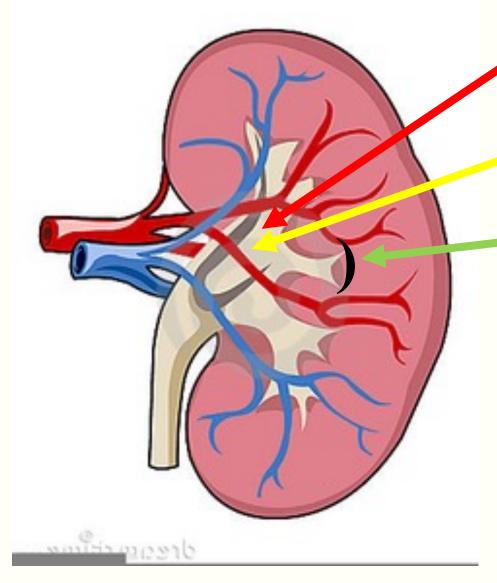
	DOA	С	LMW	Н		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	64	522	43	524	40.6%	1.49 [1.04, 2.16]	-
SELECT-D	25	203	7	203	8.2%	3.57 [1.58, 8.07]	_ -
ADAM-VTE	9	145	7	142	5.9%	1.26 [0.48, 3.29]	
CARAVAGGIO	52	576	35	579	32.1%	1.49 [0.99, 2.26]	 •
CASTA-DIVA	8	74	5	84	4.8%	1.82 [0.62, 5.31]	
CANVAS	19	330	8	308	8.3%	2.22 [0.98, 4.99]	•
Total (95% CI)		1850		1840	100.0%	1.66 [1.31, 2.09]	◆
Total events	177		105				
Heterogeneity: Tau ² = 0.00; Chi	² = 4.82, df	= 5 (P :	= 0.44); I ²	= 0%			0.01 0.1 1 10 100
Test for overall effect: Z = 4.23	(P < 0.0001))					Favours DOAC Favours LMWH

UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE


DOAC vs. LMWH for the treatment of cancer associated thrombosis. Systematic review and meta-analysis of randomized controlled trials

D. Overall Mortality							
2. 0.0.0	DOA	С	LMW	Н		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
HOKUSAI-VTE CANCER	140	522	127	524	29.9%	1.11 [0.90, 1.36]	*
SELECT-D	48	203	56	203	13.6%	0.86 [0.61, 1.20]	
ADAM-VTE	23	145	15	142	4.4%	1.50 [0.82, 2.76]	+-
CARAVAGGIO	135	576	153	579	31.4%	0.89 [0.73, 1.08]	=
CASTA-DIVA	19	74	20	84	5.5%	1.08 [0.63, 1.86]	+
CANVAS	71	330	57	308	15.3%	1.16 [0.85, 1.59]	
Total (95% CI)		1850		1840	100.0%	1.02 [0.89, 1.16]	♦
Total events	436		428				
Heterogeneity: Tau ² = 0.00; Chi ²	= 5.76, df =	= 5 (P :	= 0.33); l ²	= 13%			0.01 0.1 1 10 100
Test for overall effect: Z = 0.25 (P = 0.80)						0.01 0.1 1 10 100 Favours DOACs Favours LMWH

> Frere et al. Journal of Hematology & Oncology (2022) 15:69 https://doi.org/10.1186/s13045-022-01289-1


In Setting of Upper GI Cancer or Pathology, A DOAC Has Increased Risk of Bleeding!

Servier Medical Art de Servier est mis à disposition selon les termes de la licence Creative Commons Attribution 3.0 France

http://www.clker.com/cliparts/8/2/e/8/151672346617847761 36human-kidney-clipart.med.png Slide 34 DOAC (Rivaroxaban, MWt. 436)

LMWH (Enoxaparin, MWt. ~4500)

Antithrombin III (MWt. 58,000)

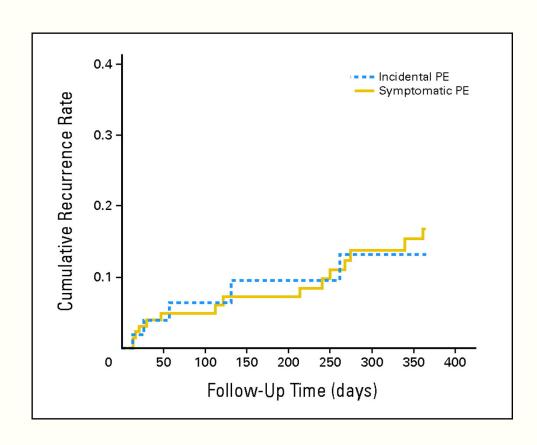
- > DOACs and LWMH are both cleared, in part, in the urinary tract.
- > However, DOACs are "direct" and will have anticoagulant activity, while LMWH are "indirect" and will not have activity, in the absence of ATIII.
- > Under normal circumstances, ATIII is not cleared in the urine.

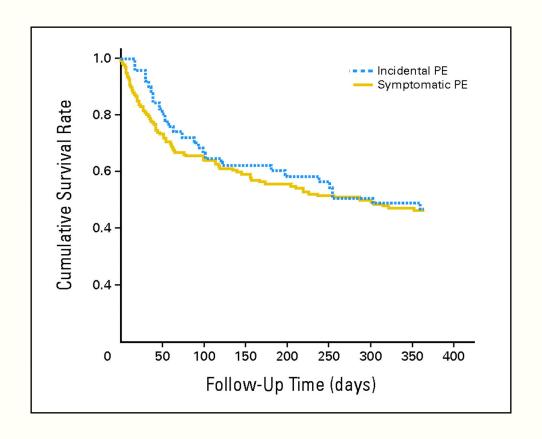
Recurrent VTE Versus Bleeding

- > Pooled analysis of studies of DOAC versus LMWH showed preserved efficacy (trend towards lower), at price of increased bleeding.
- > Bleeding appears to be in "improperly" selected patients.
- >GI/GU Bleeding not increased in patients without anatomic risk.
- >DO NOT USE DOACS IN PATIENTS WITH ACTIVE GI OR GU LESIONS OF INSTRUMENTATION!

Recurrent VTE Versus Bleeding

- > The appropriate question is not which anticoagulant is better (i.e. a DOAC versus low molecular weight heparin).
- > The appropriate question, "In a given patient which anticoagulant is appropriate?"


6. Incidental Thrombosis/ Pulmonary Embolism


- > Clinical relevance?
- > Risks of recurrence, need for anticoagulation?
- > Retrospective cohort study (2004-2010)
- >Incidental Pulmonary Embolism (n=51)
- > Symptomatic Pulmonary Embolism (n=144)
- >Observed for 1 year
 - > Den Exter P L et al. JCO 29:2405-2409, 2011.

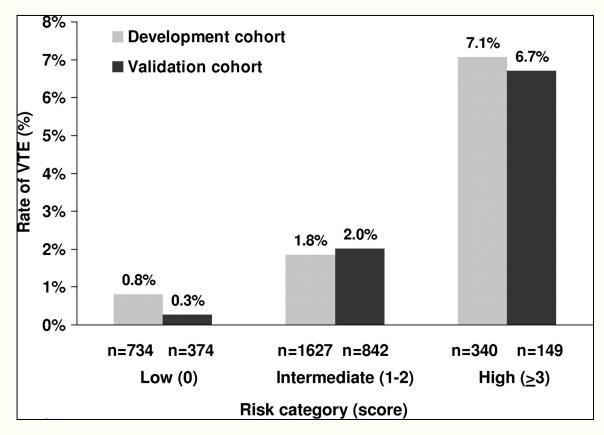
Cumulative Recurrent VTE

Cumulative Overall Survival

den Exter P L et al. JCO 2011;29:2405-2409

7. Primary Thrombosis Prophylaxis

- > Is there a role for thrombosis prophylaxis in outpatient, ambulatory cancer patients prior to development of a thrombosis?
- > Balance: risk:benefit:cost:convenience



Predictive Model for Chemotherapy-Associated VTE

Patient Characteristic	Risk Score
Site of Cancer	
Very high risk (stomach, pancreas)	2
High risk (lung, lymphoma, gynecologic, bladder, testis)	1
Prechemotherapy platelet count ≥ 350K/mcL	1
Hemoglobin < 10 g/dL or use of red cell growth factors	1
Prechemotherapy leukocyte count more than 11K/mcL	1
BMI 35 kg/m2 or more	1

- ➤ Khorana AA et al. Blood. 111:4902-4907, 2008.
- ➤ Khorana AA & Connolly GC. JCO. 27:4839-4847, 2009

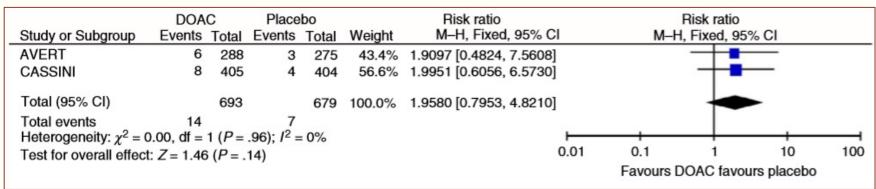
Rates of VTE According To Scores From The Risk Model In The Derivation And Validation Cohorts

- > Possible role in identifying population where primary anticoagulation prophylaxis is appropriate.
- Khorana, A. A. et al. Blood 2008;111:4902-4907

Risk Prediction Scores for Venous Thromboembolism in Cancer Patients

- > Some incorporate biomarkers or molecular profiles that may improve prediction capability, but at trade-off that the additional information will not be routinely available.
- > The goal is to identify high-risk patients for whom prophylactic anticoagulation may be warranted.
 - > Van Es et al, Haematologica. 2017 Sep; 102(9): 1494–1501., doi: 10.3324/haematol.2017.169060

ltem	Khorana score (points)	Vienna CATS score (points)	PROTECHT score (points)	CONKO score (points)	
Pancreatic or gastric cancer (very high-risk tumors)	+2	+2	+2	+2	
Lung, gynecological, lymphoma, bladder, or testicular (high-risk tumors)	+1	+1	+1	+1	
Pre-chemotherapy hemoglobin <10 g/dL or use of erythropoietin stimulating agents	+1	+1	+1	+1	
Pre-chemotherapy white blood cell count >11 x 10%	+1	+1	+1	+1	
Pre-chemotherapy platelet count ≥350 x 10°/L	+1	+1	+1	+1	
Body Mass Index >35 kg/m²	+l	+1	+1	-	
D-dimer >1.44 μg/L	-	+1	-	-	
Soluble P-selectin >53.1 ng/L	-	+1	-	-	
Gemcitabine chemotherapy	_	_	+1	-	
Platinum-based chemotherapy	_	_	+1	-	
WHO performance status ≥2	_	_	_	+1	


WHO: World Health Organization.

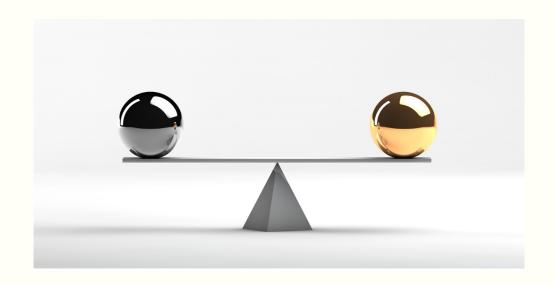
DOAC for the prevention of thrombosis in ambulatory patients with cancer, with Khorana Score of > 2

Venous thromboembolism

	DOA	С	Place	bo		Risk ratio	Risk ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI	
AVERT	12	291	28	283	39.5%	0.4168 [0.2162, 0.8033]		
CASSINI	25	420	37	421	60.5%	0.6773 [0.4153, 1.1045]	 	
Total (95% CI)		711		704	100.0%	0.5592 [0.3511, 0.8907]	•	
Total events Heterogeneity: $\tau^2 = 0$	37 $0.03; \chi^2 =$	1.35, 0	65 df = 1 (<i>P</i>	= .24);	I ² = 26%	, -		
Test for overall effect	t: Z= 2.45	P = 0	01)			0.0	01 0.1 1 10 10 Favours DOAC favours placebo	00

Major Bleeding (on-treatment)

- AVERT: Apixaban. Carrier et al, NEJM, December 2018
- CASSINI: Rivaroxaban. Khorana et al, NEJM 2019
- Li A et al, J Thromb Haemost, 2019:17:2141–2151 **Slide 43**


8. Anticoagulation and Brain Cancer

- > <u>Brain metastases</u>: The risk for intracranial hemorrhage was fourfold higher in patients with melanoma or renal cell carcinoma than lung cancer, but the risk was not influenced by the administration of enoxaparin.
 - > Donato J, et al Blood. 2015;126(4):494-9.
- ➤ <u>High-grade glioma</u>: The cohort that received enoxaparin was 3 times more likely to develop a major ICH than those not treated with anticoagulation.
 - > Mantia C, et al Blood. 2017;129(25):3379-85.
- > <u>DOAC versus LMWH</u>: In patients with brain metastases or primary brain tumors DOACs did not increase the risk of any ICH relative to enoxaparin.
 - > Carney BJ, et al. J Thromb Haemost. 2019;17(1):72-6.

8. Management of Anticoagulation in Setting Of Chemotherapy-Induced Thrombocytopenia.

- ➤ In cancer patients, need for therapeutic anticoagulation often is concurrent with thrombocytopenia from chemotherapy, or other reasons.
- > Anticoagulation and Thrombocytopenia are both risk factors for bleeding.
- > No validated approach to management.

Guidelines Implemented In 2010

Platelet Count	MSKCC Guidelines
>50,000/mcL	Full Therapeutic Dose
25,000/mcL - 50,000/mcL	Half Dose
<25,000/mcL	Hold Temporarily

Guidelines disseminated by education and posting on institutional intranet. A number of institutions follow a similar strategy.

"There is little literature on the management of these difficult patients." Lee, A., *JCO*, 2009.

"Platelet transfusions may be used to facilitate ongoing anticoagulation." Impractical support due to very short duration of improvement.

Clinical Outcomes

During Anticoagulant Modification per Guidelines:

- ➤ No Recurrent VTE Episodes (<1%)
- ➤ No Major Bleeds (<1%)
- ➤ 1 Major Bleed *Before* Dose Reduction of LMWH
 - > Trauma-Associated Retroperitoneal Hemorrhage
 - > Occurred on the 3rd Day of Thrombocytopenia
 - > Platelet Count at the Time: 28,000/mcL
- > CRNMB Occurrence: 13 of 140 episodes.
 - > Ecchymosis, Epistaxis, or Gingival Bleeding
- > 10 Deaths During the Thrombocytopenic Episodes.

Comprehensive NCCN Guidelines Version 1.2022 **Cancer-Associated Venous Thromboembolic Disease**

NCCN Guidelines Index **Table of Contents** Discussion

MANAGEMENT OF ANTICOAGULATION FOR VTE IN PATIENTS WITH CHEMOTHERAPY-INDUCED THROMBOCYTOPENIA

- Thrombocytopenia is a common occurrence in patients with cancer who are receiving therapeutic anticoagulation for cancer-associated thrombosis. Generally, anticoagulation is considered safe with platelet counts ≥50,000/µL. The risk of bleeding is thought to increase as platelet counts decline below this threshold. Traditionally, physicians have transfused platelet concentrations to maintain platelet counts above 50,000/µL in patients with thrombocytopenia on therapeutic anticoagulation, but this is not always feasible depending upon the duration and severity of thrombocytopenia and availability of blood products.
- When managing a patient with cancer-associated thrombosis with thrombocytopenia the provider should consider:
- The patient's risk for recurrent thromboembolism, and
- The patient's risk of bleeding including the anticipated depth and duration of thrombocytopenia
- For patients at high risk of recurrent thromboembolism (includes recent proximal DVT or PE [within 1 month of anticoagulation treatment], recurrent thromboembolism) management options include:
- ▶ Continuation of therapeutic dose anticoagulation while maintaining platelet count ≥50,000/µL with platelet transfusions
- > Placement of a retrievable IVC filter and discontinuation of anticoagulation until platelet recovery
- For patients at lower risk for recurrent thromboembolism (includes DVT/PE occuring after more than 1 month of anticoagulation treatment, central venous catheter-associated DVT, upper extremity DVT, acute distal DVT) management options include:
- ▶ Use lower dose anticoagulation as outlined below in table
- > Remove central venous catheter in patients with central venous catheter-associated DVT
- Monitor distal DVT with serial US surveillance while patient is off anticoagulation (if clot extends to proximal venous system, then manage as acute high-risk patient)

Enoxaparin Dose Modification in the Setting of Thrombocytopenia

Platelet Count	Dose Adjustment	Suggested Dose of Enoxaparin	Alternative Once-Daily Dosing Regimen		
>50,000/µL	Full-dose enoxaparin	1 mg/kg twice daily	1.5 mg/kg daily		
25,000-50,000/µL	Half-dose enoxaparin	0.5 mg/kg twice daily	_		
<25,000/µL	Temporarily hold enoxaparin				

• Note: NCCN currently does not recommend use of DOACs below a platelet count of 50,000/uL as there is limited published experience using DOACs in this situation.

Note: All recommendations are category 2A unless otherwise indicated.

Clinical Trials: NCCN believes that the best management of any patient with cancer is in a clinical trial. Participation in clinical trials is especially encouraged.

Version 1.2022, 3/11/22 © 2022 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN

VTE-F

UNIVERSITY OF MIAMI MILLER SCHOOL of MEDICINE UNIVERSITY OF MIAMI HEALTH SYSTEM

